
Complexity in the Cloud

App Virt

Hypervisor

Web Service

OS

SAN

Policy

Guidance

Best
Practices

BLADE

Risk

Security Posture and Behavior Coupling

←Workload→

Coherence

←Governance/Risk→

App

OS

EC2

Fabric: Lots of Configuration!
2

The cloud is very different

 Deeper stacks
 … each layer has its own vulnerabilities
 More intimately coupled
 More dynamic workloads
 Multi-tenant
 … each with different (evolving) governance
 … under potentially different (evolving)

regulatory domains
 … accountable for different (evolving) due

care

3

But… (Variation on the Gartner
7)

4

 Am I compliant? (at every level in any state)
 Trust Stack: Physical or Logical or…..
 What is shared? (coupling)
 Where is the problem? (context via connect the dots)
 How well is my deployment working? (at all levels)
 How should I re-provision? (next desired state)
 How can I improve? (good citizens vs. problem children)

 Issue: Black Box Abstraction of Complex Activity:
 Can’t Manage what you can’t measure. Drucker
 Can’t Measure what you can’t see. Deming
 => Automation, of any kind, without feedback inevitably does the

wrong thing very efficiently.

EC 2 Management Plane

SSLBastion
Host

Specifi
c

Host

Specifi
c

Host

Specifi
c

Host

Specifi
c

Host

LOG

AWS
Admin

VM

Customer(root)
•Disable access(PW)
•Generate keys
•Enable Token/Key Access
•Privilege Escalation (user)
•Logging

Firewall
•Mandatory Inbound
•Default deny
•Open Needed Ports
•Port, Protocol, Source

Solution Direction: Visibility

 Visibility vs.
Transparency

 Configuration Visibility
 Sec/Op Relationships
 Trust/health X tenant
 Root Cause

 Behavioral Visibility
 Root/Cause
 Alignment
 Improvement

5

“You can’t manage what you can’t measure”, Drucker
“You can’t measure what you can’t see”, Deming

Solution Direction: Models

 Model-based controls (SML, OVF, OSLO,
SDM, UCA …)
 Tie constraints to intentional relationships
 Service lifecycle: design – de-provisioning
 Dynamics (autonomics)
 Inform “next desired state” (design impact of

change)
 XCCDF – OVAL, … but in model vocabulary

6

Solution Direction: Small is
Good
 (much) Smaller Virtualization Kernels

 Hyper Guard, sHype, Flask, …

7

Appendix
8

Virtualization Specific
Vulnerabilities

9

Virtualization Specific Vulnerabilities
XenSploit

 Resulting Guidance:
 Encrypt Dynamic Migration channels
 Restrict access
 Tightly control vNIC configuration
 Isolate LANs (Management, Transactional, Dynamic Migration)

http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-539-07.pdf

“Owning Xen”: ITL, BlackHat
2008

Proposes using vulnerabilities, like CVE-2007-4993 CVE-2007-5497 to gain root in dom0 from unprivileged dom.
Stop packet queue with kernel function netif tx disable()
Using DMA to create a backdoor
reading: set a transmit ring entry so that the data pointer points to <arb addr>, and the receive ring entry data pointer points to
buffer we can read
writing: set a transmit ring entry so that the data pointer points to our data, and the receive ring entry data pointer points to <arb
addr>
Can be implemented as a kernel module that gets the address dev get by name() macro
Demo code works for all NIC cards supported by the Linux tg3.c driver.
…Addresses bypassing IOMMU and VT-d…

Server Virtualization
Vulnerabilities

So monitoring emergent configuration controls is always necessary..

…

…

Reference: NIST National Vulnerability Database,
http://nvd.nist.gov/ <needs update>

